
PMM U.S.S.R.,Vol.46,pp,125-128 
Copyright Pergamon Press Ltd.1983.Printed in U.K. 

0021-8928/83/l 0125 $7.50/O 

UDC 533.6.011:534.222.2 

~X~PlE OF SOLVING TRANSONIC EQUATIONS 
FOR A SHOCK-FREE FLOW PAST A SYMMETRIC PROFILE* 

V.A. IVANOV and I.A. CHERNOV 

A parametric method /l/ of solving the transonic K&m&-Fal'kovich equations is 
developed. The nozzle solution is generalized to the case of the flows not sym- 
metric about the longitudinal axis of the nozzle. A procedure of passing from this 
solution to the case of a flow past a profile discussed in /2/ is then shown. This 
in fact means that the real and imaginary part of the complex function describing 
this flow have been obtained. The resulting solution depends on three constants 
determining the dimensions of the profile (length of chord and the maximum thickness) 
and also the flow rate at infinity. Numerical analysis is used to obtain the condi- 
tion for the flow to be shock-free , and a continuous velocity field is constructed 
under the conditions close to the limiting state. Setting up a flow chart for the 
cases when the condition of no shock is violated shows #at a three-sheeted fold 
appears, the top of which lies within the supersonic region. This confirms the con- 
clusion made in /3-55/ that in a typical case of a flow past a profile, the shock 
wave originates not at the sonic streamline, but within the zone. The example con- 
structed can be used as the basis for tne theory of flow past a profile of a suffic- 
iently general form, of a gas stream subsonic at infinity. Below the transonic 
Tricomi model is used to show the corresponding generalization. 

1. Let us consider an approximate system of transonic equations 

BUY = ;pv, Ify = v, (1.1) 

where u and v are reduced dimensionless velocities of perturbation of a homogeneous sonic flow 
and *r Y are the Cartesian coordinates. We shall show one exact solution of the system (1.1) 

u = - 4/(3cx*p*) i_ C,%S/4 -i- C&p/2 (1.2) 
v=- C,%SIiZ - 4f1(3C,$) - C,%p,pt 14. z = - &Qc,=py - Cl@/& _ +, y == t 

Here P and t are parameters, and Cl, h are arbitrary constants. The solution describes the 
motion in plane Lava1 nozzles with local supersonic zones at the walls, obtained in /l/. Let 
us write (1.2) in the symbolic form 

Using the first 

and this yields 

The functions X 

zJ = u (P* t: G* A)* v = v (p, t; c,, h), z = I (p, t; c,, h), 9 =: $J (p, *; c,, &) (1.3) 

two equations of (J-.3), we write p and t in terms of L1, v,c,, E, to obtain 

P = p (w, u, C,, t = T (u, Y: C,, A) 

= = (u, v: u, (U‘ v; 5). X) = x (u, c,, a) 

Y = Y U-’ (w, v: C,, a), T (u, v; C,, h). C,, b) = Y (u, v; c,, a) 

and Ysatisfy the linear system 

zJY,= x,, Y,= x, 

which is equivalent to (1.1). Obviously, differentiating and integrating 
to C,,S and D leads to new solutions of (1.5). 

Let us introduce the following generalized differentiation operator 

a% n.k 

ac;"ahnd (1.6) 

defined for the integral values of m, n and k (the positive values denote differentiation,and 

(1.4) 

(1.5) 

Iand Y withrespect 

the negative values the integration). Applying the operator (1.6) written in parametric form 
to tl.Zf, yields more new solutions. 
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The solution (1.4) equivalent to (1.2) has a singularity at the point u=u~=- (3/&)*/$ 
v=O. The singularity is a branch point of the order I/* for the functions X and Y /2/. We 
note two properties of the operator (1.6): a) differentiation with respect to 1, reduces the 
order of the singularity at the point U= Q,D= o by one, and the symmetry is upset; the solu- 
tion in which V= 0 when y= 0 transforms into a new solution where U= 0 when y= 0 , b) 
differentiation with respect to I also reduces the oxder of the singularity by one, but the 
symmetry property is preserved. 

Fig.1 Fig.2 Fig.3 

2. Application of the operator ~",',o/~C~oa~a~o to* and y from 11.2) yields the expression for 
o1 andyI which, together with u and v from (1.2), determine a symmetric solution with the 
singularity index of -"la. If we now integrate z1 and v1 with respect to u, we obtain (brackets 
denote the vectors) 

PC’ WC) = 
a=-' (X, Y) 

qdhfdir~ 

with the same singularity as in (1.4). 
A different parametrization of the nozzle solution (1.2) was used in /5/ where 

(2.1) 

and the properties of a flow generated by the solution with 

were studied. By virtue of the linearity of the hodograph equations (1.5) we can write, from 
(1.2) and (2.1), the combination (k is an arbitrary constant) 

(zr, gr) = @. Y) -t bc> Y,) k 

which assumes the following form in the variables 12.2): 

u = C, (1 - C&/(28*) + C,%% v = cl*t (2 + C*s3)/(4$)- C,Wi2 (2.3) 
"r = (1 -t- ZC,S-9)/(2s~) - C,t2/4 + kc&as) y* = t i_ US 

The solution constructed describes a class of flows in Lava1 nozzles nonsymmetric about the 
longitudinal axis of flow. Fig.1 depicts the lines a= coast (solid) and Y= coast (dashed) in 
the I y -plane, for k = -9.1, ('1 = -2-'3-%j, C? ~2 -9.09496. The isolines u = 0, u Z!Q intersectatthe 
point .4 . The value u0 represents the characteristic subsonic velocity of this nozzle. The 
actual representation for 

(with the accuracy of up to the multiplication factor) is obtained in the form 
21 = 2s (2 + c,s3 - C,Psl)/(C,K) 
~2 = - 4t&(C,K), K = (2 -I- C&" - 6C,M 

(2.4) 
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where u and 0 are given by (2.3). 
The singularity of this solution intheparameterplaneis t=O, C$ = - 2, whichcorresponds 

to the infinity of the plane zXY, with the same characteristic velocity Q. The sonic line 
emerges from the coordinate origin (s -CO), forms a local supersonic zone and returns to the 
coordinate origin (s-0, t-m). The condition v=O holds everywhere along the z-axis except 
at the coordinate origin where another singularity is situated. A three-sheet fold similar 
to that discussed in /5/ is present in the region of supersonic velocities. 

To remove the ambiguous character of the velocity field in the zy -plane, we combine 
z~,Y, and the nozzle solution (1.2) 

(2. Y) = (x1, Y1) + (X? Y) D (2.5) 

The flow described by (2.5) together with s.and v from (1.21 is subsonic when D<-(4C&,)-1. 
The relation v--=0 holds everywhere along the 2 -axis except on the segment AS shown in Fig.2. 
The part of the z-axis contained between A and B is obtained from the condition Y-0, n+O 
and 

t* = I(2 + C&2 = 4sSl(DC,)]l(6~'~s2) (2.6) 

When t-0, (2.6) yields the coordinates s, and S, of the points corresponding to A and 3. A 
part of the first quadrant of the at parameter plane bounded by the segment of the s-axis 
contained between s1 and S( and by the curve (2.61, corresponds to the flow outside the cut 
AB, and f= O,C$= -2. again corresponds to the infinity on the sy-plane where v=o and 
21=ug. 

When the values of C, and C, are as before and -O& <D<O, the structure of the local 
supersonic zone is identical to that occurring at D = 0. when - 1.95 <D 4 - 0.81, one of the 
branches of the limiting line vanishes and the other, with the cusp within the zone,approach- 
es the sonic line without however touching it. Finally, when D = - 1.95, no limiting lines 
appear within the zone. Fig.2 depicts the velocity field at I) =- 1.95 and the stream line 
obtained by integrating the equation dYrdz=o from A to B and regarded as the generatrix of 
the profile. The velocity distribution along the cut AL? is also shown. 

Study of the flows in the cases when the condition of no shock is violatedmayyieldsome 
information about the mechanism of shock formation. Fig.3 depicts a part of the flow for 
zt = -1.88 ~ with C,and C, remaining the same. The characteristic curves of one family are 
reflected from the sonic line and, beginning from the point S, intersect with themselvesthus 
forming a fold. If the dimensions of such fold are small, then we can construct separately 
the equipotential stream lines of the first and third sheet and the line along whichtheshock 
polar is formed, and show that on approaching the point S these lines coincide in the limit 
with each other and remain sufficiently close at some distance from S. Assuming a certain 
admissible error, we can regard such a split shock as a model of a weak shock wave shown in 
Fig.3 as the line SL of varying thickness. 

3. In order to construct a solution to the problem of a flow past a profile of suffic- 
iently general shape, we can use the following set of partial solutions singularatthepoint 
V= 0, u=u,and obtained from (1.2): 

(x-11 1 y-7%) := 
ao,-n*o (X, Y) 

(@~*-n~“” (n-1,2,...) 
1 

(3.1) 

A single integration (~=:i) yields 

zJL1 = C,V (I - C,s3)/(1W) + C,~(lO c**s* - SC*?3 4 4)/(40~) 

y-1 = (2 + C,sJ) C~%/(@) 

and repeated integration (n= 2) yields the expressions 

.x_* = (C,V$(- 27C,%% f SC,%%’ (1 i- 3C$f + 5C,fa,a(3 - '%?- 
15C,*sa) + 20 (5 + 2lC# - 3c&* + 4&V)) + Cl3 (10 f 152C.+ 
300C@ + 32oc,3s9 - 2oc*‘P))/(i28oss) 

y, = Cl? (27C&W7 - SC~%v (2 + 3Cps9) + 6OC,PS (C*V + C$ -I- iI- 

20 (cg f 2) (2C*%~ - IOCQ - ~))/(6~Os6) 

The solutions obtained can be combined with the regular solutions such as e.g.Chaplygin solU- 
tions of the Tricomi equation. Another possible method of increasing the generality of the 
new SOlUtiOnS consists of passing in (1.2) from the constants c,,& to ~,(C,*,h*),h.(C~*,h*) and 
differentiating with respect to C,*,h*. 
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